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Školitel: Doc. RNDr. Pavel Cejnar, Dr.
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Chapter 1

Introduction

Although models of collective dynamics of atomic nuclei [1, 2] belong to the oldest
subject of nuclear physics, they still exhibit enormous potential for yielding important
new results. Many of them is connected with a modern form of the collective model,
the interacting boson model (IBM) [3], but purely geometric approach still provides
adequate framework for the interpretation of main features of nuclear collective motions,
even those accommodated within the IBM.

In the present work, we use the geometric collective model (GCM) to study the
interplay between regular and chaotic behavior both in the classical and quantum case.
The definition of chaos is primarily derived from the instability of classical motions,
expressing the organization of trajectories in the phase space. The term “quantum
chaos” [4] refers to some quantum properties—most commonly specific short- and long-
range correlations in spectra of energy eigenvalues—that usually accompany the classical
chaoticity. Intense study of these properties in the last decades made it possible to extend
the notion of chaos from macroscopic systems to small quantum objects like atoms or
nuclei.

Historically, nuclear physics offered the first confrontation of ideas related to quan-
tum chaos with experimental data. It was when sequences of neutron resonances with
a fixed spin and parity Jπ were shown to agree with spectral correlations predicted by
the random-matrix theory [5]. The persistence of the same kind of statistics was sub-
sequently demonstrated [6] also for ensembles of low-energy nuclear levels (although in
this case also serious deviations from chaotic correlations were detected in some families
of states, particularly the collective states with Jπ = 2+ and 4+ in even-even nuclei).
Possible existence of chaotic layers of dynamics was recently discussed [7] even in con-
nection with ground states of nuclei—in the analysis of fluctuating properties of nuclear
masses.

All these data suggest that atomic nuclei at low energies exhibit a variable mixture
of regular and chaotic dynamical aspects. However, very little is known about the prin-
cipal mechanisms that control the competition between both types of motions. Several
possible sources of irregularity can be identified already on the mean-field level, but
the most substantial effects are supposed to result from residual interactions, which,
however, are too difficult for explicit analysis.
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A viable alternative to the attempts to solve the nuclear many-body problem in its
full complexity is the use of simplified models that capture only some essential dynamical
features of nuclei in various regimes [1]. Since residual interactions are responsible for
highly correlated collective modes of motions (complementary to single-particle modes),
one may try to search for signatures of regularity and chaos in the known elementary
collective models, such as the IBM or GCM. This approach was pioneered by Alhassid
et al. [9, 10] and by Paar et al. [11] using the IBM.

A detailed study of ordered and chaotic motions in the framework of the geometric
collective model is presented in this work. The thesis is based particularly on published
references [I, II, VII, VIII].

This abstract begins with some theoretical remarks in Chapter 2 which exposes
basics of the geometric collective model and techniques of measuring chaos. We restrict
ourselves to a subset of quantum levels with zero angular momentum, which makes the
configuration space effectively two-dimensional, in contrast to five-dimensional space
corresponding to general motions. Then we proceed to the classical version of the model
(Sec. 3.1) and describe the dependence of classical measure of regularity on energy and
parameters of the model and continue towards the quantum version in Sec. 3.2.

The model for zero rotations can be quantized in two physically meaningful ways.
We solve the eigenvalue problem in both cases and compare the level statistics obtained,
looking particularly into the regions where transitions between regular and chaotic dy-
namics take place. The possibility of changing the value of a classicality (Planck) con-
stant enables us to populate the spectrum with variable density of quantum states, which
is used for a global inspection of large energy domains and zooming in some finer de-
tails. By comparing the classical and quantum measures of regularity and the quantum
measure calculated in various quantization schemes we test the Bohigas’ conjecture [12].

We also employ the more or less forgotten graphical method invented in 1984 by
Peres [13], which turns out to be very fruitful as an indicator of the changing structures
across the spectrum containing possibly a very large number of states. The spectrum
of stationary states of a given quantum system with two degrees of freedom is drawn
as a lattice in the plane E × 〈P 〉, where E is energy and 〈P 〉 stands for an arbitrary
observable average. This allows one to recognize ordered and disordered patterns and
visually allocate regular and chaotic domains within the same energy interval. Finally,
the abstract is closed by the conclusion.
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Chapter 2

Theoretical outline

2.1 Geometric collective model

2.1.1 Hamiltonian

We consider the Hamiltonian of the geometric collective model (GCM) [14] in the trun-
cated form

H =

√
5

2K
[π × π](0) +

+
√

5 A [α × α](0) −
√

35

2
B

[

[α × α](2) × α

](0)

+ 5 C
(

[α × α](0)
)2

(1)

where αµ, µ = −2, . . . , 2 form the spherical tensor of quadrupole shape variables (they
can be viewed as coefficients at the Y2µ spherical harmonics in an expansion of nuclear
radius), having five independent real components, πµ = −K(dα∗

µ/dt) the associated

tensor of momenta, and [•× •](λ) stands for the coupling to angular momentum λ. The
constants {K,A,B,C} are adjustable parameters. We neglect higher-order terms of the
Hamiltonian, in particular the 3rd-order kinetic term.

The transformation into the principal frame of deformation yields the potential in
the form

V = Aβ2 + Bβ3 cos 3γ + Cβ4 =

= A
(

x2 + y2
)

+ B
(

x3 − 3xy2
)

+ C
(

x2 + y2
)2

, (2)

where we use the usual parametrization [1]:

α0 ≡ x = β cos γ
√

2 α2 ≡ y = β sin γ. (3)

The system described by Eq. (1) has five degrees of freedom. The tensor α can be
diagonalized to get two shape coordinates x and y (or β and γ) and three Euler angles
{θ1, θ2, θ3} characterizing the relative orientation of the principal and laboratory frames.
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Parameters β and γ represent the known Bohr variables; β = 0 stands for spherical
shape, β > 0 implies nonzero deformation with prolate or oblate axially deformed shape
for γ equal to even or odd multiples of π/3, respectively.

We restrict ourselves to the the nonrotating case J = 0: the principal frame is at
rest and the motion can be described solely in terms of x and y (or equivalently in terms
of β and γ). In this case our system is effectively two dimensional (2D).

It is worth mentioning that the system is integrable for B = 0 and the parameter B
governs the strength of nonintegrable perturbation. We denote the nonintegrable term
of the potential (2) as

H ′ = β3 cos 3γ. (4)

2.1.2 Scaling properties and phase diagram

Hamiltonian (1) contains four external parameters. Without the loss of generality, the
fundamental physical units of the system can be chosen such that three out of the four
parameters become equal to unity or to ±1 for A, while the remaining parameter takes
the role of the external variable. The only fundamental parameter, determining the type
of equilibrium shape of the nuclei, can be introduced as

τ ≡ AC

B2
. (5)

In the quantum case, the classicality parameter

κ ≡ ~
2

K
, (6)

whose changes can be viewed either as changes of the Planck constant, or as changes of
the mass, constitutes the second independent parameter of the model. This parameter
determines the absolute density of states.

In the whole work we fix C = 1 and K = 1.

Figure 1 shows the phase structure of the geometric model. Gray parabolae τ =
const. (or paraboloids, if the third coordinate of the parametric space corresponding
to the parameter C is considered) represent sets of parameters giving scale-equivalent
Hamiltonians. Thick solid lines A < 0, B = 0 and τ = 1/4 depict first-order phase
transitions between prolate and oblate shape and between deformed and spherical shape,
respectively. Dotted line, which can be expressed explicitly as

A = −1, B ∈ (0, 1)

A ∈ (−1, 1), B = 1 (7)

A = 1, B ∈ (1, 0),

represents the curve which crosses all parabolae. It is profitable to present the results
on this path.

9



� 1.0 � 0.5 0.5 1.0

� 2

� 1

1

2

-1

-1

-2 -3 -4 -5 5 4 3

1

2

-2 -3 -4 -5 5 4 3 2

1

B

A

-

- -

-

Figure 1: The GCM phase diagram in the plane of parameters A and B for any C > 0. Thick
solid lines represent phase separatrices (first-order), thick dashed lines enclose the region of
phase coexistence. Thin gray parabolae correspond to dynamically equivalent parameter sets
related by scaling transformations. They are marked with values ±1/

√

|τ |. Dotted line depicts
the path which passes through all different configurations of the GCM system.

2.1.3 Quantization and diagonalization

Standard quantization procedure with πµ = −i~ ∂
∂αµ

(satisfying comutation relation

[αµ, πν ] = i~δµν) leads to the kinetic term [1]

T (5D) = − ~
2

2K

(

1

β4

∂

∂β
β4 ∂

∂β
+

1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

)

+ Trot, (8)

where Trot stands for a nontrivial rotational part of the kinetic energy, containing the
derivatives with respect to Euler angles and coupling all five dynamical variables (this is
the reason for the notation 5D). However, in the considered nonrotating case this term
is identically zero, Trot = 0, and only the two vibrational degrees of freedom remain.

For J = 0 the truly 2D scheme represents an alternative way of quantization. It
means that we put the system into the intrinsic frame first and only then carry out the
quantization. The kinetic term obtained in this way reads as follows:

T (2D) = − ~
2

2K

(

1

β

∂

∂β
β

∂

∂β
+

1

β2

∂2

∂γ2

)

, (9)

which is nothing but the standard 2D kinetic energy expressed in polar coordinates
(r, φ) ≡ (β, γ).

We diagonalize both types of the GCM Hamiltonian in the respective 2D or 5D
harmonic oscillator bases. While the original 5D solution possesses several implicit
symmetries arising from the ambiguity of the system’s orientation in the intrinsic frame,
solutions of the 2D model do not a priori satisfy such symmetries. If the spectra and
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spectral statistics associated with both quantizations are to be compared, conditions of
symmetries need to be imposed externally also to the 2D case. In addition, if we slightly
relax the conditions, we can split the 2D quantization scheme into the odd and even
cases, which gives us another independent class of 2D solutions.

Both expressions (8) and (9) have the same classical limit and offer a possibility to
study the influence of the quantization method on the quantum chaotic features of the
spectrum. Let us stress that in the nuclear physics context only the 5D quantization is
correct.

2.2 Measuring and visualising chaos

2.2.1 Fraction of regularity

At first we introduce the measure of classical regularity. Trajectories in the phase space
of an integrable system with 2 degrees of freedom lie on surfaces that are topologically
equivalent to 4D tori. In crossings with a plane (the so called Poincaré section) such tori
form sets of 1D curves (ovals) which are covered by passages of individual trajectories
(periodic orbits create just sequences of isolated points on these curves). On the contrary,
a fully chaotic system is subject to the ergodic principle which ensures that orbits
uniformly cover the whole kinematically accessible area of the Poincaré section. In
intermediate cases—for partially chaotic/regular systems—the randomly covered areas
in the Poincaré section coexist with regular islands, remnants of tori. An example of a
Poincaré section is shown in Fig. 2.

-1 0 1

-1

0

1

px

x

Figure 2: An example of the Poincaré section. Each dot corresponds to the passage of one
trajectory of the GCM system with parameters A = −1, B = 0.446, and energy E = 0 through
the plane y = 0 (in this figure we show altogether 50000 such crossings of 52 randomly chosen
trajectories).
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We quantify the degree of regularity in case of J = 0 by a relative fraction of regular
islands in the Poincaré section. More specifically, we introduce the ratio

freg =
Sreg

Stot

, (10)

where Sreg is the area corresponding to all regular islands in the y = 0 Poincaré section
and Stot is the total kinematically accessible area of the same section. Fraction (10) may
change between limiting values 0 (complete chaos) and 1 (perfect order) as the external
control parameter A and energy E vary.

Regular fraction freg would be determined through dividing the total area of the sec-
tion into an infinite grid of cells and labeling each cell according to whether it is crossed
by a regular or chaotic trajectory, which are distinguished by the Smaller alignment
indices method (SALI) [15]. More details concerning the calculation of freg are given in
articles [I, II, V].

2.2.2 Spectral statistics

In this subsection we turn to measuring quantum chaos. According to Bohigas’ con-
jecture [12], chaotic systems exhibit strong correlations between levels, which result in
an effect known as “spectral rigidity”. The short-range component of these correlations
is most clearly manifested in the distribution of the nearest-neighbor spacings (NNS),
i.e. gaps between neighboring levels in a transformed (so-called unfolded) spectrum. In
fully chaotic systems, this distribution is amazingly well approximated by the Wigner
distribution, while in systems with regular classical counterparts the NNS distribution
tends to be Poissonian.

A suitable quantity allowing one to interpolate between the two limiting cases is the
Brody parameter ω [16]. It is defined through the distribution

PB(s; ω) = (ω + 1)Nω sω exp
(

−Nω sω+1
)

(11)

Nω =

[

Γ

(

ω + 2

ω + 1

)]ω+1

,

where s is the spacing between adjacent levels in the unfolded spectrum and Nω a
factor resulting from the required conditions

∫ ∞

0
PB(s; ω)ds = 1 (normalization) and

∫ ∞

0
sPB(s; ω)ds = 1 (unfolding). Eq. (11) interpolates between the Poisson (ω = 0)

and Wigner (ω = 1) distributions, hence a value ω ∈ 〈0, 1〉 obtained from a concrete
spectrum tells us where between order and chaos the actual system is. The adjunct
(1−ω) of the Brody parameter can be directly compared with the regular fraction freg.

Practically we proceed as follows: We divide the calculated spectra (usually we are
able to find 30000 well-converging levels) into windows of 1000 levels and after unfolding
procedure we estimate the Brody parameter for each window via the χ2 fit, applied to
the cumulative distribution function

RB(s; ω) ≡
∫ s

0

PB(s′; ω)ds′ = 1 − e−Nω sω+1

. (12)

As a result of this procedure we obtain energetical dependence of the Brody parameter.
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2.2.3 Peres method

Quantum measures of chaos are usually based on certain statistical properties of the
spectra of energy levels, e.g. on the nearest-neighbor-spacing distribution (and the
related Brody parameter ω, see previous section) or on the long range correlations of
eigenvalues [17]. It is clear that the statistics describes only some bulk features of a
sufficiently large portion of the spectrum. However, the method introduced by Peres in
1984 [13] makes it possible to assign regular, chaotic, or a mixed type of dynamics to
individual states. Peres’ method is entirely visual and can be considered as a quantum
analogue of the classical technique based on the Poincaré sections.

The method can be briefly described as follows: Having an arbitrary constant of
motion A in an integrable conservative system and drawing its eigenvalues Ai against
energies Ei of individual levels i, the resulting image forms a fully regular lattice (due
to the EBK quantization). Since the constant of motion A can be unknown or even
does not exist (in nonintegrable systems), Peres proposed to take the time average of
an arbitrary observable P . The operator corresponding to this average commutes with
the Hamiltonian, or its classical Poisson brackets vanishes. In practice it means that we
calculate expectation values 〈P 〉i for individual eigenstates and plot them against Ei. It
can be shown that in an integrable (regular) system such a lattice is formed by ordered
patterns, while chaotic (or mixed) systems exhibit (partly) disordered lattices.

In the geometric model we consider two different Peres operators. The first one is
identified with the square of the angular momentum operator L connected with the
rotations varying angle γ. In the 2D case, this is the Casimir invariant of the O(2)
algebra of rotations in the (β, γ) plane:

L2
2D = ~

2 ∂2

∂γ2
. (13)

In the 5D case, L2 is the Casimir invariant of the GCM algebra O(5) [18] restricted to
value J = 0 of the O(3) angular momentum (null rotations in the ordinary space). We
have

L2
5D =

~
2

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
. (14)

The second Peres operator used in our analysis correspond to the nonintegrable pertur-
bation H ′ of the Hamiltonian, given by Eq. (4).
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Chapter 3

Numerical results

3.1 Classical Chaos in the GCM

The fraction of regularity freg for given parameter and energy is calculated by means of
the method described in Sec. 2.2.1. The complete map of freg in the nonrotating case
of the GCM system (1) is depicted in Fig. 3. The horizontal axis shows the values of a
free parameter of the system and is divided by thick white lines into three regions with
different scalings, following the path expressed by Eq. (7). The vertical axis shows the
energy. The regularity with extremely interesting behavior at absolute energy E = 0,
which corresponds for A < 0 to a local maximum of the potential (2) at β = 0, is
presented separately in Fig. 4.

Both leftmost and rightmost parts of the figure correspond to the integrable case
B = 0 with freg = 1. As no explicit second integral of motions is known for B 6= 0,
we expect increasing chaos when the integrable limit B = 0 is being departed. This is,
however, not quite so. The dependence of freg on energy and a control parameter of the
system exhibits very complex nonmonotonous behavior, involving virtually integrable
regions. The most important well-pronounced island of regularity in a wide range of
energies is observed at B ≈ 0.6. As shown in Ref. [III], this region is connected with
the so-called regular arc of the interacting boson model [9, 10]. Increased values of the
regular fraction are also observed for other values of the adjustable parameter at E ≈ 0,
see Fig. 4.

The degree of chaos also depends on energy. For E close to the minimal value of
the potential (2), the system performs nearly harmonic vibrations around one of the
minima. For E ≫ 0, one again expects regular behavior as the quartic term in potential
(2) completely prevails (see Refs. [I, II]). In the intermediate region of energies, striking
areas with high regularity is observed. The bands of full regularity—the strong one
clearly visible at energy E ≈ 24 for A ' −1.2 in the scaling B = 1 and followed by a
smaller one at E ≈ 7 for A ' 0.6 in the same scaling—still remain unexplained.

Dash black line in the Fig. 3 encircles the area where the kinematically accessible
region have concave border. In the geometric model, the lower part of the line (up
to energies E ≈ 1) corresponds exactly with the curve obtained by the method using
Riemannian geometry [19], which should separate regions with regular and chaotic dy-
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Figure 3: Complete map of classical regular fraction freg as a function of control parameters
and energy E. The degree of chaos is coded in shades of gray, with light gray (black) corre-
sponding to complete order (chaos). The plot is divided by the thick white lines into three
regions with different scaling (A = −1, B = 1, and A = 1, respectively), according to the
path expressed by Eq. (7). White dashed line indicates the deformed-spherical shape phase
transition. Black dashed line corresponds to the convex-concave transition of the border of
kinematically accessible area (concave shape is confined inside). The absolute error of the
calculation of freg does not exceed 0.02.
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Figure 4: The regular fraction freg for E = 0 as a function of B (scaling A = −1, the left part
of the graph) and of A (scaling B = 1, the right part of the graph).

namics. However, it is evident from the figure that this geometrical criterion gives only
approximate estimation of the place where regularity falls into chaos. Generally one
observes that chaotic regions slightly penetrate out through the separation line with
some exceptions appearing, e.g., near the arc of regularity B ≈ 0.6.

3.2 Quantum chaos in the GCM

3.2.1 Brody parameter

We compare the quantum measure of regularity (Brody parameter), obtained in the way
described in Sec. 2.2.2, with the corresponding classical measure freg from Fig. 3.

Figure 5 depicts the dependence of both measures freg and (1 − ω) on energy. The
value of the Hamiltonian parameter B was chosen as B = 1.09 The energy range shown
in the figures represents the most interesting region, lying between the domains of full
regularity at very low and very high energies. As was mentioned above, for energies
just above the global minimum of the potential the system is entirely regular due to
the validity of the harmonic-well approximation. With increasing energy, the regularity
suddenly breaks down and continues falling sharply until it nearly reaches zero. After
this stage, it takes off again and exhibits several well pronounced peaks of highly regular
motions, which are separated by valleys of more chaotic dynamics. For sufficiently high
energies, not shown in the present figure, the regularity starts growing steadily toward
the fully regular limit, following roughly a logarithmic dependence.

Classical measure freg, taken from the vertical section of the Fig. 3 at B = 0.62, is
drawn by the solid line, the energy dependence of the adjunct of the Brody parameter
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Figure 5: A comparison between the classical regular fraction freg and an adjunct (1 − ω) of
the Brody parameter for B = 1.09 calculated in two different types of quantization (dash line
correspond to the 2D even case, dotted line to the 5D case).

(1−ω) by the dashed and dotted line for 2D even and 5D quantization scheme, respec-
tively. Observed maxima and minima of all curves coincide, however, it turns out that
the Brody parameter tends to slightly overestimate the regularity. Indeed, there is no
reason to expect that freg and (1− ω) behave in exactly the same way. We only expect
a qualitative agreement, and that is fully confirmed in the present calculation.

In this figure we can also observe the dependence of the quantum measure of chaos
on the method of quantization. Although the spectra obtained by various types of
quantizations differ from each other distinctly, the Brody parameter for all quantization
schemes exhibits essentially the same dependence on energy, the mutual deviations being
fully within the range of standard errors. Therefore, we can report that full agreement
with Bohigas’ conjecture is confirmed in the present model independently of the chosen
quantization scheme.

More detailed discussion concerning the correspondence of classical and quantum
measures of chaos of is presented in the article [VII].

3.2.2 Peres lattices

We construct the Peres lattices in the GCM system for two independent operators L2

and H ′, see Sec. 2.2.3.

First of all, we show the decay of regularity with increasing perturbation B, depicted
in Fig. 6. Panel (a) demonstrates the fully regular lattices for the integrable case B = 0
(the average value 〈H ′〉 is identically zero in this case). It is worth emphasizing that the
lattice in an integrable case is regular for any averaged operator. As can be seen in panel
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Figure 6: Peres lattices for J = 0 eigenstates of the GCM in the 2D even quantization (~ =
0.005) with 3000 levels plotted. The points represent individual eigenstates with coordinates Ei

(energy) and 〈P 〉i (expectation value of the respective Peres operator). Two Peres operators,
L2 (left column) and H ′ (right column) are taken into account. Row (a) correspond to the fully
integrable case, B = 0. Row (b) depicts the disturbance of the lattice with small nonintegrable
perturbation, B = 0.05. Row (c) shows the most chaotic case, B = 0.24.
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(b), adding a small perturbation to the integrable Hamiltonian does not instantaneously
break down the entire regular lattice. Instead, some localized seeds of distortion are
created, while the rest of the lattice remains ordered in the same fashion as in the
integrable case. This scenario is in accordance with Percival’s conjecture [20] assuming
that the sets of regular and chaotic eigenstates are statistically independent in the
semiclassical limit ~ → 0, i.e. they do not interact with each other. Therefore, the
persisting regular parts of the lattice can be associated with surviving remnants of
classical tori, while the disordered parts correspond to proliferating chaotic orbits. As
the perturbation strength B grows, the remnants of tori are gradually disappearing and
disorder tends to increasingly plague the lattice. This is demonstrated by an almost
totally disordered lattice in panel (c), where only a few low lying states keeps the regular
pattern.

The above-outlined visual method allows one to judge which parts of a mixed spec-
trum (or, in optimal cases, which individual states) are regular and which are chaotic,
in contrast to traditional methods of quantum chaos based on the spectral statistics.
since in that case regular and chaotic (or mixed) parts of the spectrum can only be
specified by energy. In the present approach, these parts can coexist within the same
energy interval, the additional information needed for their separation being obtained
from the behavior of the averages 〈P 〉i.

0.6

0.6

0.0

0.0
0.0 0.0-0.5 -0.50.5 0.5

-1

-1
0

0

E

(a) 2D even

(b) 5D

〈L 〉 〈H' 〉2

Figure 7: Peres lattices of the GCM at A = −1, B = 0.62 with averages of L2 (left) and H ′

(right) for 2D even (row a) and 5D (row b) quantizations (~ = 0.005). In row (a), three states
denoted by full symbols are identified in both lattices. In the inset of the top right panel the
energetical dependence of the classical regular fraction freg is shown.
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Figure 8: Squared wave functions for the three marked states from Fig. 7 (2D even quantiza-
tion). The states (a) and (c), which correspond to the square and the diamond, respectively,
are taken from the regular part of the lattice (the 1995th and 1885th level, respectively). The
state (b), associated with the bullet, belongs to the chaotic part (the 1890th level), showing
an ergodic behavior.

E E

〈L 〉2
〈H' 〉

(a) h=0.01

(b) h=0.02

Figure 9: The same as in Fig. 7, but only for 2D even quantizations and different values of
Planck constant: ~ = 0.01 (row a) and ~ = 0.02 (row b). Dashed boxes enclose the same area
of each column as is shown in Fig. 7.
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In Fig. 7 we compare Peres lattices obtained (for both Peres operators) in the 2D
even and 5D quantizations. The value B = 0.62 belongs to the island of strongly
pronounced regularity close to the resonance of β and γ vibrations, see Sec. 3.1. The
regularity shows up as a large area of ordered points, which starts at the lowest negative
energies and spreads over to positive energies, where it is joined by a rising chaotic area.
Despite the spectra for different quantizations show significant differences, the form of
Peres lattices is rather similar.

In order to demonstrate the coincidence of the regular and chaotic regions in the
lattices for different Peres operators, we have highlighted three of the states in the first
row of Fig. 7, marking them by a square, a bullet, and a diamond. Probability densities
for the corresponding wave functions are depicted in Fig. 8. The wave functions as well
as the location of the respective points in the Peres lattice show that the square and
the diamond correspond to regular states, while the bullet represents a chaotic state. In
Fig. 7(a) we see that this assignment is consistent for both choices of the Peres operator.
Let us note that both regular levels (a) and (c) in Fig. 8 exhibit a large increase of the
wave-function magnitude in a region where a certain periodic trajectory oscillates in the
classical case [4].

Although we can choose an arbitrary operator for plotting the Peres lattice, Fig. 7
indicates that some operators may be more suitable than others. For some choices, a
part of the regular region in the lattice can pervade into the chaotic area and hide there
behind a disordered mesh of points. In such cases, one cannot decide whether a level
inside a chaotic region is indeed chaotic. (On the other hand, overlapping regular areas
form a regular area again.) While there is no doubt that these observations demonstrate
limitations of the Peres method, one can improve its resolution by employing several
incompatible Peres operators. Indeed, Fig. 7 (right) shows that for the three highlighted
states a better choice of Peres operator is P = H ′.

Figure 9 displays Peres lattices for 2D even quantization with different Planck con-
stant ~. Tuning the value of ~—which is proportional to the classicality constant κ, see
Eq. 6—one scales the absolute density of quantum states. Here we want to show that
these changes do not influence the main features of the Peres lattice. The variations of
the lattice with ~ = 0.005, 0.01, 0.02 for both Peres operators are observed in Figs. 7
and 9. The structures with well pronounced minima and maxima of the dependence
classical regular fraction freg on energy is shown in the insets. A decrease of the ~ value
increases the density of states (the system gets closer to the classical limit) and serves
as a zoom into the sea of levels: one can see finer details of the lattice but (because of
computational limits) a smaller fraction of the spectrum is available. For a comparison,
the thick dashed box in both panels of the same column of Fig. 9 encloses a fixed region
of energy × P-average from Fig. 7. It is seen that the structures observed in the lattice
become wealthier in details as κ decreases, but the overall appearance of the relevant
part of the lattice remains the same.

Peres lattices in the geometric collective model are fully discussed in Ref. [VIII].
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Chapter 4

Conclusion

In this work we studied J = 0 vibrations in the geometric collective model, that cap-
tures the most essential collective degrees of freedom in nuclei. In spite of the model’s
conceptual simplicity, it exhibits enormous complexity of solutions, with a very sensi-
tive dependence of the observed behaviors on external parameters and energy. These
features qualify the model for being a subject of detailed analyses of the competition
between regular and chaotic modes of motions on both classical and quantum levels.

First we have analyzed classical chaos which allowed us to to understand the clas-
sical character of various types of motions that emerge in different regimes of nuclear
collective dynamics, in particular those involved in the competition between regular and
chaotic features. We have demonstrated that the GCM exhibits an unexpectedly com-
plex interplay between regular and chaotic types of motions. The important result is
the discovery of two well-pronounced quasiregular islands in intermediate domains of
the control parameter B and energy E. One of these islands resides at low energies,
E < 1, in the range approximately B ≈ 0.6, A = −1, and the other one at intermedi-
ate energies, E ≈ 24, within the interval A ∈ (−1.2,∞), see Fig. 3. While the latter
quasiregular region is probably too high in excitation energy to be relevant experimen-
tally, the former one is undoubtedly a close relative of the IBM “arc of regularity” [9, 10].
It needs to be stressed that the origin of regularity in the above domains still remains
rather unclear. On the other hand, the mechanism underlying the emergence of chaos in
nuclear collective motions at the lowest energies was identified with the convex–concave
transition of the shape of the kinematically accessible area in the plane of deformation
parameters, which exactly correspond to the regular-chaos transition obtained by the
geometric method [19].

The framework of quantized geometric model allowed us to study the correspondence
between classical and quantum measures of chaos. Although the dependence of chaotic
measures on some external control parameters has been extensively studied in quantum
billiards, see e.g. Refs. [21, 22], the dependence on energy has been marginalized so
far. This is partly because billiard systems do not permit this kind of analysis—their
chaotic features are always uniform in energy. Even the studies based on “soft” potential
systems have been so far focused mostly on the cases with a relatively simple energy
dependence of chaotic measures, see e.g. Refs. [23, 24]. In this sense, the present work
can be considered as complementary to the studies based on two-dimensional billiard
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systems. We have demonstrated that a tight connection between classical and quantum
measures of chaos, embodied in the well-known Bohigas’ conjecture [12], remains valid
even under the condition of a strong energy dependence.

Another important conclusion of the work is the observed independence of quantum
chaotic measures on the method used to quantize the system. Since the definition of
quantum chaos is based on the system’s semiclassical limit, it would be very surprising
to find the opposite—i.e. statistical properties of spectra depending on the quantization.
However, the question deserves to be further tested. The present work is probably only
a first step in this direction.

Our results show that the Brody parameter, despite of being often deprecated, repre-
sents a reasonably sensitive measure of chaos in quantum system. This method enabled
us to study the breakdown and reoccurrence of ordered quantal spectra with running
parameter B in a much more detailed way.

Finally we have revitalized an almost 35 years old method by Peres [13] and showed
its great potential in the field of quantum chaos and even beyond. Peres lattices pro-
vide an excellent viewpoint to the landscape around the border between classical and
quantum physics. This is so especially for systems with two degrees of freedom whose
lattices can be drawn as two-dimensional diagrams, in analogy with planar Poincaré
sections of such systems. If applied within the domain of quantum chaos, Peres’ method
enables one to distinguish regular and chaotic behaviors on the level of individual states
or subsets of states within the same energy interval. The structural information on
individual eigenstates is represented by a single variable (the average of a suitably cho-
sen observable), which allows one to use a simple visualization technique incorporating
simultaneously a large number of states.

We showed that we can construct for one system more lattices with different Peres
operators and that some of them are more suitable than others to capture the most
essential dynamical features. The optimal choice of the Peres operator should be sub-
ject to further study. Although the Peres’ method does not directly yield a calculable
measure of quantum chaos, it represents an important indicator providing new insights
into the origin of chaotic behavior.

The work summarizes our long-term effort to map chaotic properties of the geometric
collective model of nuclear physics.. A great advantage of the geometric model (and also
of the related interacting boson model) is the apparent conceptual simplicity encoding
strikingly rich complexity of dynamics. Let us note that the above simplified models
capture the main phenomenological features of nuclear collectivity which are presently
beside a fully microscopic description. The study of disordered collective dynamics
within these models may be considered as an attack to the problem of chaos in many-
body systems from the direction perpendicular to the mean-field approach.
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[11] V. Paar, D. Vorkapić, “Abul-Magd-Weidenmüller chaoticity effect: Evidence for
interacting boson model?”, Physics Letters B 205, 7 (1988); “Quantum chaos for
exact and broken K quantum number in the interacting-boson model”, Physical

Review C 41, 2397 (1990); V. Paar, D. Vorkapić, A. E. L. Dieperink, “GOE-type
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