1 GCM adapted for the study of variable rigidity

1.1 Hamiltonian

H=T+V=_, (wz + %wi) AR+ BEYf(7) + CB* (1)

A, B,C, K are adjustable parameters (with the same meaning as in the GCM). The function
f(v) is imposed to have the following properties:

1. f(v) is analytic and periodic with the period 27: f(vy) = f(y + 2j7).

2. On the interval [0,27), f(v) has only one minimum f(7mim) = —1 and one maximum
J(Ymax)=1.

3. The range of values of f(v) is [-1, 1].

4. The function is symmetric around the minimum:
f(’}/min + 7) = f(/ymin - 7)

The potential given by (1) has two minima at

p1=0 (spherical) (2)
JIBZ —
By = 3B + 98BC' 32AC77min (deformed) (3)

and a barrier between them at

3B —9B? — 32AC
8C

Bp =

provided that A, B,C > 0, 9B% > 32AC.
The spherical-deformed shape phase transition occurs for B? = 4AC. On the phase
transition, both minima have the same depth V(f; = 0) = V (3, = \/A/C) = 0! and they are

separated by the barrier V(8p = %\/g) = A%/16C. The Taylor expansion at the deformed

minimum in the direction 3 is
V(B)=A(B — B2)* + O(8 = f2)*. (5)

By comparing the quadratic term with the Hamiltonian of the harmonic oscillator, the fre-

quency of small 3 vibrations is
_ [2A
Q g _—

where K is the mass parameter of the Hamiltonian. We will be interested in the ratio of g
and ~ frequencies (the “rigidity ratio”) defined as

2

R=21, (7)

2

where

LQuantities expressed on the phase transition B2 = 4AC are marked with the bar in the whole text.
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1. R <1 for y-soft cases,
2. R > 1 for v-rigid cases.

Note, however, that in general this ratio changes when one moves out from the critical point.
This will be discussed briefly in Sec. 1.4

1.2 Function f(v)
1.2.1 Choice 1

e =2 (1) - )
f()
1
1\\&\ /]
) Function f{"(v) for r =1,2,.
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(b) -soft case for r = 3. (¢) ~-rigid case for r = 3.

Figure 1: Potential for Choice 1 of the v dependence.

Function fqgl) and the potential V' are shown in Fig. 1. If r > 1, function fﬁl) makes the
potential V' v-soft with the deformed minimum at vy =7m. A - rlgld case is obtained simply
by taking the opposite function — fr which can effectively be done by the transformation
B — —B. In this case the deformed mlnimum sits at v = 0.
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’r H \ 1 \cosv\ COSQ’V‘COS3’}/‘COS4’)/‘COS5’)/‘COS6”)/‘ cos?’y‘
1 1 1
2| 1 -1 4 1
30 5 | -6 | 15 6 1
4 6—14 —29 56 28 8 1
5| 55 | —130 | 210 | 120 45 10 1
6 | 57 | —962 | 792 | 495 | 220 66 12 1
7 ﬁ —2380 | 3003 | 2002 | 1001 364 91 14 1

Table 1: Explicit expressions for the first 7 functions fﬁl)(’y) with integer r. An example how
to read in the table: f{" =1/4(—1+ 4cosy + cos 27).

Table 1 gives the explicit expressions for a few of the lowest integer values of r.

A disadvantage of the function (8) is that in the soft case for integer r >= 2, it does
not have the quadratic term in the Taylor series at the minimum (instead the minimum is
approximated by a quartic function or a function of even higher order). In the rigid case,
however, the quadratic term in the expansion exists and the potential (1) in the ~ direction

can be aproximated as
2

R A
VOmEd(y) = Zry? + 0(y)°. (9)

Hence the frequency of small v vibrations is

o | 2A2 2A
O 1D)rigid

and the rigidity ratio

R(l)rigid — \/; (11)
(it is displayed in Fig. 2).
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Figure 2: Rigidity ratio for integer r in the rigid case (Choice 1).



1.3 Choice 2

2 cosy+3\"
(2) — 1| —
0 =5 () -1 - (12)
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(a) Function f7(2)(7) for r=1,2,...,10.
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(b) y-soft case for r = 3. (¢) ~-rigid case for r = 3.

Figure 3: Potential for Choice 2 of the v dependence.

Function f,gl) and the potential V are shown in Fig. 1. If r > 1, function j‘}gl) makes the
potential V' y-soft with the deformed minimum at v = 7. A ~-rigid case is obtained simply
by taking the opposite function — fqgl), which can effectively be done by the transformation
B — —B. In this case the deformed minimum sits at v = 0.

Table 1 gives the explicit expressions for a few of the lowest integer values of r.

Function f,@) and the potential V are shown in Fig. 3. Table 2 gives the explicit expressions
for the lowest integer values of r.

The function covers again both y-soft and -rigid cases in the same manner as is described
in the previous Subsection. Its expansion in the deformed minimum has the quadratic term



’ r H \ 1 cos 7y cos 27y \ cos 3y \ cos 4y \ cOoS DY \ cos 67y \ cos 7y ‘
1] 1 1
2| 5 -1 12 1
3 1 —18 111 18 1
4 56 —221 936 220 24 1
5| w5 | —2310 | 7570 | 2280 | 365 | 30 1
6 || o5 | —22162 | 59976 | 21615 | 4500 | 546 | 36 1
7 || somz | —202020 | 470267 | 194166 | 49161 | 7812 | 763 | 42 1

Table 2: Explicit expressions for the first 7 functions f7§2) () with integer 7. An example how
to read in the table: fz(l) =1/12(—1 + 12 cosy + cos 27).

in both cases: in the v-soft case

pemi(y) = ATy 2P+ Oy — n)
C2r—1
_ 2A r
Q(Q)soft — ot
K K2r—1
(2)soft _ r
2r — 1’
and the y-rigid case
o A2y 20
V(2)r1g1d = 0 2 O 3
Qrga _ (241 2
K K22r—1
. or
R(2)r1g1d C
22r — 1’
(displayed in Fig. 4).
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(a) Soft case.

(b) Rigid case.

Figure 4: Rigidity ratio for integer r (Choice 2).
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1.4 Comments on the functions

1. Choice 2 gives smaller rigidity ratio in the rigid case.

2. If r = 1, which means f(v) = cos~, then potential V is symmetric at the point of the
barrier Sp:
V = AB? + VAAC B cosy + Cp*
= AB* + V4ACB*x + CB*

2

2 2
—A (x _ %\/ZC) + (A + \/4AO> +C ($ — %\/ZC) + P
1
= 50 [A2 +8AC (=" 4 ¢*) +16C* (2" + y2)2] (19)

(v = x — Bp) that is indeed even in both 2’ and y. The potential is plotted in Fig. 5.

0B T T
04
02
0.0

—0.2}

—0.4F 1

_0.6;\ T O T T T S S I ' \;
~08 -06 -04 -02 00 02 04

Figure 5: Demonstration of the symmetry of potential V with f(y) = cos~ at the critical
point.

3. The rigidity ratio R depends on the adjustable parameters A, B, C' of the potential. It
decreases for A below the critical point and diverges at the antispinodal point (where
the deformed minimum disapears). An example is shown in Fig. 6.

1.5 Technical intermezzo: Diagonalization
1.5.1 Basis

The system is diagonalized in the basis

[nm) = R (5) P (7) (20)



257
2.0f

15¢

1.0t

0.5F

0.0'

Figure 6: Dependence of the rigidity ratio R on parameter A for C' = 1 and f§2) with r =1
(black thick line), r = 5,9 y-soft (green lines below the black line), and r = 5,9 ~-rigid (blue
lines above the black line). The critical point is marked by the red dashed line.

of the 2D harmonic oscillator

B B R (10 .0 1 02 9
HO_T_I_VO__%(B% %_{—@8_72)_{_1405. (21)
where
2kn! /2 _ 1452
Rom(8) =\ gy (8°) e 3L, (67) (22)

D7) = \/;eim7 (23)

(L}, denotes a Laguerre polynomial, [ = |m| and k = /240K /h?). The eigenvalues of (21)

are

where Q = /24,/K.

1.5.2 Matrix elements

E©) = (nm|Ho|nm) = hQ(2n + 1+ 1), (24)

The general expression for the matrix elements are [1]

n'In! (—1)w+nte

n+ D+ 1)

(n',m + b|B* cos by|lnm) =

N | =

3 [L(a+1+1)+s]1[5(a—AD|[2 (a+ AD]!
sl(n' = s)I(n' + s)! [3(a — Al) —n' + s]! [$(a+ Al) —n + s]!

S

(25)

where

[ = |m| U= |m| Al=1—1 (26)



and the limits of the summation are
1 1
max {0, n' — 5(@ — Al),n — 5(@ + Al)} <s <min{n’,n} for a + b even,

0 <s <min{n’,n} for a + b odd. (27)

It is possible to express the most frequently used matrix elements for the Hamiltonian (1)
explicitly:

(| Plnm) = 7 (2 + m + 1) (28)
(n + 1, ml|82|nm) — —%\/(n—i—l)(n—l—m—i—l) (29)
(nm] B |nm) = %[n(n— D)+ (n+m+1)Gn+m+2)] (30)
(n + 1, m| 3 [nm) :—%(2n+m+2)\/(n+m+1)(n+1) (31)
(n+ZmW%mw:£§(n+m+2W%Hn+U@ﬁ2Kn+D (32)

The matrix elements of the term proportional to B must be calculated using the general
formula (25).
If the indexes i = {n,m}

0<n<N,-M<m<M, (33)
of the Hamiltonian matrix are ordered in such a way that

ci—li+1,.. i+ Ni+N+1...

=...{n—=1mp{nm}{n+1,m},....{nm+1}{n+1m+1}, ... (34)
(N, M limit the number of basis states), then the matrix has a band structure with
W =(r]+1)N+3(M mod 2). (35)

superdiagonals ([e] stands here for the nearest lower or equal even number).

1.5.3 Convergence

The convergence depends on the number of basis states given by N, M and on the basis
stiffness Ay. The lower the Planck variable A is and the more the potential V' differs from Vj,
the more basis states are needed in order to achieve good convergence.

The system is diagonalized in the triangular basis whose states fulfill the condition

2n+|m|+1<e¢ (36)

[instead of the rectangular condition (33) given above]. Tables 3-6 give the best basis con-
figurations for the systems that are studied in the following text. The error § is defined

as
€ € e+10 e+10

) max ’ ’
=
j EJ('E+10) E(ge—‘rlO)

(37)

where EJ(-E) is the j-th eigenvalue of the Hamiltonian matrix with the basis size limited by e.
The convergence criteria is assessed as § < 1-1072.
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Al A e o
05| 03 | 50 |1.0-10°
04 | 018 | 60 |27-10°°
0.3 |0.08| 70 | 55107
0.25 | 0.06 | 80 | 6.6-103
0.2 | 0.06 | 100 | 5.7-10°%
0.15 | 0.07 | 120 | 5.1 103
0.1 | 0.07 | 140 | 48107
0 | 007160861073

Table 3: Basis parameters for f;, A = 0.0015, 500 well-converging states.

| A A [ e]| 0 |
05 [025] 40 [5.8-1073
04 |0.16 | 50 | 1.0-107*
0.3 |007] 60 | 6.4-10"*
0.2510.05| 70 | 3.9-1073
0.2 |005] 90 |3.1-1073
0.1 | 0.06 | 120 | 4.1-1073

0 |0.06]|140 | 4.0-1073

Table 4: Basis parameters for y-soft fé2), h = 0.0015, 500 well-converging states.

Al A e o
05|03 |50 [12.10°
04 | 018 | 60 | 18107
0.3 |0.08| 70 51107
0.25 | 0.08 | 90 | 1.4-103
0.2 | 0.08 | 110 | 47107
0.1 | 0.08 | 140 | 1.0 1072
0 |008|160|1.0-102

Table 5: Basis parameters for ~v-rigid féQ), h = 0.0015, 500 well-converging states.

Al A e o |
05 |0.25| 40 [ 10107
04 |0.16| 45 | 53107
0.3 |0.06 | 50 | 25107
0.25 | 0.04| 65 | 341073
02 |0.05| 80 | 54107
0.1 | 0.05|100 | 1.0 1072
0 | 005110201073

Table 6: Basis parameters for ~-rigid f5(2), h = 0.0015, 500 well-converging states.



1.6 Results

I am calculating the level dynamics for Hamiltonan (1) with f7£2) and the following values of
the adjustable parameters:

B=1
C=1

h = 0.0015

D = 500 (38)

(D is the number of calculated eigenlevels). So far I have finished these cases:

1. The basic 7 = 1 case, R = 1. The level dynamics is in Fig. 7. At the critical point
A =1/4, 13 states penetrate the barrier.

2. The ~-soft r = 5 case, R = ,/3% ~ 0.40, see Fig. 8. At the critical point 28 states pass
through the barrier.

3. The ~-rigid r = 5 case, R = 44/ % ~ 1.6, see Fig. 9. At the critical point 10 states pass
through the barrier.

4. The v-soft r = 9 case, R = §11 ~ 0.13, see Fig. 10. At the critical point 50 states pass
through the barrier.
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Figure 8: The same as in Fig.7, here for the ~-soft case féQ).
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Figure 9: The same as in Fig.7, here for the v-rigid case f5(2).
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Figure 10: The same as in Fig.7, here for the y-soft case fé2).
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