The program requires .NET Framework 2.0. Therefore, in can be run natively under the operation systems Microsoft Windows Xp, Vista, 7. Under Linux, BSD, Mac OS X it is possible to use the products Mono or DotGNU (however, the complete function of the program is not guaranteed).
Version 0.9.9.2 (15th March 2012)  

All platforms:  ZIP archive (6.56MB) 
Changes and new functions: 


Version 0.9.9.1 (18th January 2010)  

All platforms:  ZIP archive (3.85MB)  
Forced 32bit:  ZIP archive (3.85MB) 
Changes and new functions: 


Version 0.9.9.0 (9th April 2009)  

All platforms:  Setup file (3.28MB)  ZIP archive (3.83MB) 
Forced 32bit:  Setup file (3.31MB)  ZIP archive (3.83MB) 
Warning: The program requires the dot '.' to be set as a decimal separator.
Name  Description  Parameters 

'  Disable array evaluation of an expression  Commands to be calculated 
  Operator   m (Int32  Double  Vector  Matrix  PointD  DateTime  LongNumber  LongFraction) ... 
!  Operator ! (boolean NOT)  Boolean value (Boolean) 
!=  Operator != (inequality)  Value (Int32  Double  Vector  Matrix  PointD  PointVector  String) ... 
#  Array evaluation of an expression  Commands to be calculated 
%  Modulo operator  Integer number (Int32); Integer number (Int32) 
&&  Operator && (boolean product)  Boolean value (Boolean) ... 
*  Operator *  c (Int32  Double  Vector  Matrix  PointD  PointVector  LongNumber  LongFraction); c (Int32  Double  Vector  Matrix  PointD  PointVector  LongNumber  LongFraction) 
**  Operator **, items of vectors and matrices are multiplied among one another  c (Int32  Double  Vector  Matrix  PointD  LongNumber  LongFraction) ... 
/  Operator /  Dividend (Int32  Double  Vector  Matrix  PointD  PointVector  LongNumber  LongFraction); Divisor (Int32  Double  Vector  Matrix  PointD  PointVector  LongNumber  LongFraction) 
//  Operator //, items of vectors and matrices are divided among one another  Dividend (Int32  Double  Vector  Matrix  PointD  LongNumber  LongFraction) ... 
:  Operator *  Starting point of the interval (Int32); Ending point of the interval (Int32); [Step if the interval (Int32) = 1] 
;  Operator ; (separator)  [Commands to be calculated] ... 
?  Help to the function  Name of a function 
??  Full help for the given function (including names and types of the parameters)  Name of a function 
@  Mutes the output of a function  Name of a function 
^  Operator ^ (power)  Root (Int32  Double  Vector  Matrix  String  LongNumber  LongFraction); Exponent (Int32  Double  Vector) 
^^  Operator ^^, power is calculated among the items of vectors and matrices  Root (Int32  Double  Vector  Matrix  LongNumber  LongFraction); Exponent (Int32  Double  Vector  Matrix) 
  Operator  (boolean sum)  Boolean value (Boolean) ... 
~  Operator ~ (joins numbers together into vector, joins strings and lists)  Value (Double  Vector  PointD  PointVector  List  String  TimeSpan) ... 
+  Operator +  addend (Int32  Double  Vector  Matrix  PointD  String  LongNumber  LongFraction) ... 
<  Operator <  Value (Int32  Double) ... 
<=  Operator <= (lesser or equal)  Value (Int32  Double) ... 
=  Operator of assignment  Variable name or indexed item; Value to be assigned ... 
==  Operator == (equality)  Value (Int32  Double  Vector  Matrix  PointD  PointVector  String) ... 
>  Operator >  Value (Int32  Double) ... 
>=  Operator >= (greater or equal)  Value (Int32  Double) ... 
abbreviate  Abbreviates a fraction  Fraction (LongFraction) 
abs  Absolute value  Variable x (Int32  Double  PointD  Vector  PointVector  Matrix) 
add  Adds an element to the end of the list  Variable; Item to be added to the end of the list ... 
addbefore  Adds an element to the beginning of the list  Variable; Item to be added to the end of the list ... 
addglobal  Adds an element to the end of the list in the global context  Variable; Item to be added to the end of the list ... 
arctan  Arcus tangens of the value  Variable x (Double  PointD  Vector  PointVector  Matrix) 
array  Z argumentů funkce vytvoří řadu (Array)  prvky řady 
arrayfiletocolumn  Text file of an array reform is such way that the items will be in one column separated by an empty line  Name of the file (String); Name of the file (String) 
arrayfiletocolumns  Text file of an array reform is such way that the items will be in the columns  Name of the file (String); Name of the file (String) 
arrayfiletocolumnsy  Text file of an array reform is such way that the items will be in the columns  Name of the file (String); Name of the file (String); [Number of items with independent x values (Int32) = 1] 
autocorrelation  Returns the autocorrelation function of a vector up to a given lag t  Vector (Vector); Time shift of the signals (Int32) = 0 
avoidedcrossing  Finds precise position of the avoided crossing of two levels (minimum of their distance)  Phase transition object (PT3); Index of the first level (Int32); Index of the second level (Int32); Minimal b for the calculation (Double); Maximal b for the calculation (Double); Maximum energy of the eigenstate and additional parameters (Int32); [Precision of the calculation (Double) = 1E14] 
avoidedcrossings  Finds points of all avoided crossings for PT3  Phase transition object (PT3); Maximum energy of the eigenstate and additional parameters (Int32); [Precision of the calculation (Int32) = 10] 
bandwidth  Size of the band of a band matrix  Matrix (Matrix) 
basisquantumnumber  Transforms the index of the basis vector into its quantum numbers and vice versa  Quantum system (IQuantumSystem); Index of an eigenvalue (eigenvector) / quantum numbers (Vector  Int32) 
basistoev  Transforms given state vector represented in basis components to a vector expressed in components of eigenvectors  Quantum system (IQuantumSystem); Ket vector (PointVector  Vector) 
basisvector  Returns a basis vector  Quantum system (IQuantumSystem); Index of an eigenvalue (eigenvector) / quantum numbers (Vector  Int32) 
bc  Vrací binomické číslo  int; int 
benford  Returns a histogram according to Benford's law  Vector (Vector); [First digit for the Benford's law (Int32) = 0]; [Number of digits taken into account in the Benford's law (Int32) = 1] 
besselj  Returns the value of the Bessel function J (Bessel function of the first kind)  Variable x (Double  PointD  Vector  PointVector  Matrix); Order of the polynomial (Double) 
besseljd  Returns the derivative of the Bessel function J  Variable x (Double  PointD  Vector  PointVector  Matrix); Order of the polynomial (Double) 
bessely  Returns the value of the Bessel function Y (Bessel function of the second kind)  Variable x (Double  PointD  Vector  PointVector  Matrix); Order of the polynomial (Double) 
besselyd  Returns the value of the Bessel function Y (Bessel function of the second kind)  Variable x (Double  PointD  Vector  PointVector  Matrix); Order of the polynomial (Double) 
binmean  Calculates mean of a PointVector in each of a defined bin  pointvector (PointVector); Number of bins or an interval (Vector  Int32) 
bounds  For given dynamical system and energy determines the bounds (higher limit) in which the solution can be found  Dynamical system (IDynamicalSystem); Energy of the system (Double) 
boxspectrum  Computes spectrum the infinitewell box potential E=sum_i (omega*ni^2) for integer frequencies omega  Maximum energy of the eigenstate and additional parameters (Int32); Frequency in the distinct directions (Int32) = 0 ... 
boxspectrum3d  Computes spectrum the 3D infinitewell box potential E = (hbar^2 pi^2)/(2ML^2)[(nx^2+ny^2)e^2a + nz^2 e^4a] (with a volume conservation condition)  Maximum energy of the eigenstate and additional parameters (Double); Deformation (Double) ... 
brody  Value of Brody distribution  Variable x (Double  PointD  Vector  PointVector  Matrix); Brody parameter (Double) 
btw  Finds points of all avoided crossings for PT3  Matrix (Matrix); [Critical value (Int32) = 4]; [Step if the interval (Int32) = 1] 
cdfe  Reads all accessible pieces of information about an izotope from http://cdfe.sinp.msu.ru/cgibin/muh/radchartnucl.cgi  Proton number (Int32); Mass number (Int32) 
cdfemaxbeta  Find the maximum value of the deformation parameter  Result of the function CDFE (List); [Which values of beta is going to be taken (0...Qmom, 1...B(E2), 2...Theory) (Int32) = 0] 
cdfemaxq  Find the maximum and minimum value of the quadrupole deformation with its errors  Result of the function CDFE (List) 
cdp  The classical double pendulum system  [mu (Double) = 1]; [lambda parameter (ratio of lengths) (Double) = 1]; [gamma parameter (gravity parameter) (Double) = 1] 
cep  The classical extensible pendulum system  [nu parameter (Double) = 0] 
cgcm  Creates a ClassicalGCM class (nonrotating case with simple kinetic term)  [A parameter of GCM (Double) = 1]; [B parameter of GCM (Double) = 1]; [C parameter of GCM (Double) = 1]; [K (mass) parameter of GCM (Double) = 1] 
cgcmj  Creates a ClassicalGCMJ class (case with nonzero angular momentum)  [A parameter of GCM (Double) = 1]; [B parameter of GCM (Double) = 1]; [C parameter of GCM (Double) = 1]; [K (mass) parameter of GCM (Double) = 1] 
cibm  Creates a ClassicalIBM class  Eta parameter of IBM (Double); Chi parameter of IBM (Double) 
clear  Erase variable from the context  Name of the variable ... 
clearall  Delete all variables from the context  
clearexcept  Erase all variables except specified ones from the context  [Name of the variable] ... 
clearglobal  Erase variable from the global context  Name of the variable ... 
cm  Calculates correlation matrix  Matrix (Matrix); [True if the signal should be normalized (Boolean) = True]; [Time shift of the signals (Int32) = 0] 
computespectrum  Computes spectrum of a LHOQuantumGCM object  Quantum system (IQuantumSystem); Maximum energy of the eigenstate and additional parameters (Vector  Int32); [True if the eigenvectors is to be calculated (Boolean) = False]; [Number of computed eigenvalues (and eigenvectors) (Int32) = 0]; [Computing method (jacobi  LAPACKband) (String) = "lapackband"] 
context  Creates a new context  [Commands that will be run on the new context]; [Name of a variable that will be copied from actual context] ... 
convexconcave  For GCM system returns the negative energy for which the border changes from convex to concave shape  GCM class (GCM); [0...Change of island shape, 1...Change of outer shape (Boolean) = True]; [Precision of the determination of the energy (Double) = 0.001] 
correlatedsignal  Polynomial regression of data  Frequencies of the signals (Vector); Phase shifts in the first region (Matrix); Time length of the first region (Int32); [Time length of the second (transitional) region (Int32) = 0]; [Phase shifts in the third region (Matrix)]; [Time length of the third region (Int32) = 0]; [Time base constant (Int32) = 256] 
cos  Cosine of the value  Variable x (Double  PointD  Vector  PointVector  Matrix) 
cosh  Hyperbolic cosine of the value  Variable x (Double  PointD  Vector  PointVector  Matrix) 
cot  Cotangent of the value  Variable x (Double  PointD  Vector  PointVector  Matrix) 
coth  Hyperbolic cotangent of the value  Variable x (Double  PointD  Vector  PointVector  Matrix) 
crop  Removes values from a vector or pointvector that are larger or smaller than given bounds  Vector (Vector  PointVector); Minimum x bound (Double); Maximum x bound (Double); [Minimum y bound (Double) = 1.79769313486232E+308]; [Maximum y bound (Double) = 1.79769313486232E+308] 
cumul  Returns a vector of cumulations sum_{i=0}^{k} s_{k}  Vector (Vector) 
cumulbrody  Value of cumulative Brody distribution  Variable x (Double  PointD  Vector  PointVector  Matrix); Brody parameter (Double) 
cumulbrodyfit  Returns the best Brody fit according to chi square test  Pointvector with cumulative spacings (PointVector); [precision (Double) = 0.001] 
cumulhistogram  Creates a cumulative histogram of a vector with a given binning  Vector (Vector); [Number of bins or an interval (Vector  Int32)] 
cumulhistogramstep  Creates an exact cumulative histogram as a step function  Vector (Vector) 
d2  Returns the second derivative  Vector (Vector); [Starting point of the interval (Double) = 0]; [Step if the interval (Double) = 1] 
deflate  Given array transforms into one dimensional array  Array to be deflated (TArray) 
delta  Calculates statistics v_{i}  v_{0}  i  Vector (Vector) 
delta3  Calculates the number variance  Vector (Vector); Interval in the format (min, max, num) (Vector) 
denominator  Numerator of a fraction  Fraction (LongFraction) 
densitymatrix  Returns a vector or a matrix with the probability density of the wave function(s)  Quantum system (IQuantumSystem); Index of an eigenvector or eigenvectors (Array) (Int32  TArray); Interval in the format (min, max, num) (Vector) ... 
determinant  Calculates a determinant of the matrix  Matrix (Matrix) 
dfa  Detrended fluctuation analysis of a given time series  Vector (Vector); [True if you want to include all points (Boolean) = False] 
double  Converts given value to a double precision number  Value (Double  String  TimeSpan  LongNumber  LongFraction) 
dpxy  Transforms angles of DoublePendulum system to (X, Y) coordinates of each body  Double pendulum system (ClassicalDP); Variable x (PointD  PointVector) 
dropcolumns  Z matice odstraní zadané sloupce  Matrix; indexy sloupců 
droprows  Z matice odstraní zadané řádky  Matrix; indexy řádků 
eigenmatrix  Returns a matrix of components of eigenvectors arranged in matrix by indexes  LHOQuantumGCM object (LHOQuantumGCM); Index of an eigenvalue (eigenvector) / quantum numbers (Int32) 
eigensystem  Eigensystem of a matrix calculated using LAPACK library (function dsyev); before calculation it makes symmetrization of a matrix  Symmetrix matrix (in other hand the matrix will be symmetrized) (Matrix); [True if the eigenvectors is to be calculated (Boolean) = False] 
emd  Detrended fluctuation analysis of a given time series  pointvector (PointVector); [Number of iterations after the condition #max  #min <= 1 is reached (Int32) = 10]; [A special parameter for the symmetry condition U+L/U,L leq delta (Double) = 0]; [True if the flat parts of the level density is going to be considered as a source of maxima / minima (Boolean) = False] 
energy  For given dynamical system and position in the phase space calculates the energy  Energy of the system (IDynamicalSystem); Position in the phase space (Vector) 
energymin  For given dynamical system returns the minimum possible energy  GCM class (ClassicalGCM) 
entropy  Entropy of eigenvalues  Vector (Vector) 
envelopematrixg  Generates an envelope matrix in Gaussian form (according to PRL 65, 529 (1990))  Size of the matrix (Int32); Variance of the distribution (Double) 
equipotential  For GCM system and given energy calculates equipotential contour  GCM class (IGeometricalMethod); Energy of the system (Double); [Number of points of the equipotential contour (Int32) = 0]; [Number of points dividing the 2pi interval (Int32) = 0] 
eulergamma  Value of the EulerMascheroni gamma constant  
evaluate  Evaluates a user function  User function (UserFunction); [Parameter of the function] ... 
evalues  Vrátí vypočítané vlastní hodnoty kvantového systému  QuantumSystem 
evectors  Vrátí vypočítané vlastní vektory kvantového systému  QuantumSystem 
evnumdiff  Pro LHOQuantumGCM třídu a zadaný vlastní vektor vytvoří matici Hn>  En>  LHOQuantumGCM; číslo vlastní funkce (int); oblast výpočtu (Vector, prvky (minx, maxx, numx, ...)) 
evtobasis  Transforms given state vector expanded in eigenvectors components to a vector expressed in components of the basis  Quantum system (IQuantumSystem); Ket vector (PointVector  Vector) 
exclude  From the first vector excludes values contained in the second vector  Vector (Vector); Values to be excluded (Vector  Int32); [Precision of the calculation (Double) = 1E06] 
exit  Sends the request to close the program  
exp  Exponential of the value  Variable x (Double  PointD  Vector  PointVector  Matrix) 
export  Saves a variable to a file  Name of the file (String); Expression (or variable); [Type of the file ("binary" or "text") (String) = "binary"]; [Additional informations (Vector) = ] 
exportmatrix  Export a matrix in three columns format: (x, y, value)  Name of the file (String); Matrix (Matrix); [Minimum x value (Double) = Není číslo]; [Maximum x value (Double) = Není číslo]; [Minimum y value (Double) = Není číslo]; [Maximum y value (Double) = Není číslo] 
exportvector3d  Export three vectors in three columns format: (v, x, y)  Name of the file (String); Vector (Vector); Vector (Vector); Vector (Vector) 
extendedcgcm1  Creates an ExtendedClassicalGCM class with mass proportional to beta^2  [A parameter of GCM (Double) = 1]; [B parameter of GCM (Double) = 1]; [C parameter of GCM (Double) = 1]; [K (mass) parameter of GCM (Double) = 1]; [Parameter extending mass coeficient (Double) = 1]; [Parameter extending mass coeficient (Double) = 1] 
extendedcgcm2  Creates an ExtendedClassicalGCM class with kinetic term proportional to beta^2  [A parameter of GCM (Double) = 1]; [B parameter of GCM (Double) = 1]; [C parameter of GCM (Double) = 1]; [K (mass) parameter of GCM (Double) = 1]; [Parameter extending mass coeficient (Double) = 1]; [Parameter extending mass coeficient (Double) = 1] 
factorial  Factorial of the value  Variable x (Double  PointD  Vector  PointVector  Matrix) 
fftspectrum  Gives the spectrum of a vector using Fast Fourier Transform (FFT)  Sampled signal (Vector  ComplexVector); [Sampling rate of the signal (Double) = 1] 
fillmatrix  Fills a matrix with points that correspond to a given PointVector  Matrix (Matrix); pointvector (PointVector); Value (Double) = 0; Bounds of the accessible region (Vector); [How to deal with already filled values ("keep"  "overwrite"  "average") (String) = "keep"] ... 
fnames  Returns names of all registered functions which begin with specified string  [Name of a function (String) = ""]; [Additional informations (Boolean) = False] 
fnval  Returns the duration of the calculation  
for  Cyklus for  inicializační příkaz; podmínka opakování; příkaz při každém provedení [; příkaz po ukončení] 
fraction  Exact fraction  Numerator (Int32  LongNumber); [Denominator (Int32  LongNumber) = 1] 
fullhelp  Full help for the given function (including names and types of the parameters)  Name of a function 
fullhelphtml  Full help for all functions (including names and types of the parameters) in the HTML format  
fullsmooth  Smooths a vector in such a manner that all components before computed position are used for averaging  Vector (Vector  PointVector) 
function  Creates a user function using the given text  Text with the function content (String); [Variable (String) = ""]; [Given context (Context)] 
functiontext  Returns the text of the function  User function (UserFunction) 
gamma  Gamma function  Variable x (Double  PointD  Vector  PointVector  Matrix) 
gaussiansmooth  Data of input pointvector interprets as mean values and standard deviations of a set of Gaussian functions  Variable x (Double  PointD  Vector  PointVector  Matrix); Coefficients of Gaussians (PointVector  Vector); [Weight (Vector)] 
getcolumns  Returns selected columns from a matrix  Matrix (Matrix); Indexes of columns (Int32  TArray) ... 
getcontext  Returns actual context  
getdiagonal  Gets the diagonal of a square matrix  Square matrix (Matrix) 
getfilecontext  Returns the context from a file  Name of the file 
getglobalcontext  Returns global context  
getglobalvar  Gets out a variable from the global context  Name of the variable 
getindex  Returns indices of items which are in given relation with given number  Vector (Vector); Value (Double) = 0; [Comparison operator ("=="  "!="  ">"  "<"  ">="  "<="); (String) = "=="] 
getrows  Returns selected rows from a matrix  Matrix (Matrix); Indexes of rows (Int32  TArray) ... 
getvar  Returns a variable from a given context  Given context (Context); Name of the variable 
getx  Z bodu nebo vektoru bodů vybere souřadnice X  PointD  PointVector 
gety  From point or pointvector separates coordinates y  Pointtype object (PointD  PointVector) 
goe  Value of Wigner GOE distribution  Variable x (Double  PointD  Vector  PointVector  Matrix) 
gparamhelp  Help to one graph parameter  Parameter name 
gparams  List of all graph parameters  
graph  Create graph  [Data for curves (TArray  Vector  PointVector)]; [Data for background (mesh graph) (TArray  Matrix)]; [Error bars for data (TArray  Vector)]; [Parameters for the whole graph (String  Context)]; [Parameters for groups of data (TArray  String  Context)]; [Parameters for curves (TArray  String  Context)] 
gse  Value of Wigner GSE distribution  Variable x (Double  PointD  Vector  PointVector  Matrix) 
gue  Value of Wigner GUE distribution  Variable x (Double  PointD  Vector  PointVector  Matrix) 
hamiltonianaction  Action of a Hamiltonian on a given ket  Quantum system (IQuantumSystem); Ket vector (PointVector  Vector); [True if the square of the operator is to be applied (Boolean) = False] 
hamiltonianmatrix  Returns Hamiltonian matrix of the given quantum system  Quantum system (IQuantumSystem); Maximum energy of the eigenstate and additional parameters (Vector  Int32) 
hamiltonianmatrixsize  Dimensions of the Hamiltonian matrix  Quantum system (IQuantumSystem); Maximum energy of the eigenstate and additional parameters (Vector  Int32) 
hamiltonianmatrixtrace  Returns the trace of the Hamiltonian matrix of a quantum system  Quantum system (IQuantumSystem); Maximum energy of the eigenstate and additional parameters (Vector  Int32) 
help  Vrátí nápovědu k zadané funkci  název funkce 
hermite  Value of the Hermite polynomial  Variable x (Double); Order of the polynomial (Int32) 
hh  Creates a HenonHeiles class  
hilberttransform  Hilbert Transform of a time series  Sampled signal (Vector); [Sampling rate of the signal (Double) = 1] 
histogram  Returns the histogram of a vector (on a given interval)  Vector (Vector); Number of bins or an interval (Vector  Int32); [Type of histogram ("point"  "line"  "bar") (String) = "point"] 
hospectrum3d  Computes spectrum the 3D harmonic oscillator potential  Maximum energy of the eigenstate and additional parameters (Double); Deformation (Double) ... 
chemicalpotential  Returns the chemical potential of the Strutinsky method for a given mass number  Strutinsky object (Strutinsky); Mass number (Int32) 
cho  Creates a Coupled harmonic oscillator class  Coupling constant (Double); [Mass (Double) = 1]; [Rigidity (Double) = 1] 
if  Podmínka for  podmínka; příkaz splnění; příkaz nesplnění 
imf  Calculates one Intrinsic Mode Function  pointvector (PointVector); [pointvector (Int32) = 10]; [A special parameter for the symmetry condition U+L/U,L leq delta (Double) = 0]; [True if the flat parts of the level density is going to be considered as a source of maxima / minima (Boolean) = False] 
import  Read a file to a variable  Name of the file (String); [Type of the file ("binary"  "text"  "matlab"  "digits"  "mathmat"  "wav") (String) = "binary"]; [How many lines to omit (Int32) = 0] 
initialcondition  For given dynamical system and energy generates initial condition of a trajectory and returns it as Vector  Dynamical system (IDynamicalSystem); Energy of the system (Double); [Plane of the section (Vector)]; [First coordinate of the phase space which will be stored (Int32)]; [Second coordinate of the phase space which will be stored (Int32)]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0]; [True if only one orientation of the crossing of the plane shall be considered (Boolean) = False] 
initialconditionx  For given dynamical system and energy generates missing coordinate / momentum in the initial condition  Dynamical system (IDynamicalSystem); Energy of the system (Double); [Initial conditions (Vector)]; [True if only one orientation of the crossing of the plane shall be considered (Int32) = False] 
instantaneousfrequency  Instantaneous frequency between two vectors  Variable x (Vector); Real part of a number (Vector); Immaginary part of a number (Vector) 
int  Converts given value to an integer number  Value (Int32  Double  String  TimeSpan) 
integrate  Calculates an integral under given curve  Curve (PointVector) 
intersection  Finds all intersection points of two pointvectors  pointvector (PointVector); pointvector (PointVector) 
intervala  Creates points for interval (as an array)  Starting point of the interval (Double); Ending point of the interval (Double); Number of points in the interval (Int32) 
intervalpv  Creates points for interval (in the form PointVector(0, interval points))  Starting point of the interval (Double); Ending point of the interval (Double); Number of points in the interval (Int32) 
intervalv  Creates points for interval  Starting point of the interval (Double); Ending point of the interval (Double); Number of points in the interval (Int32) 
isequal  Returns true if the values are equal within given difference  [Maximal error (Double) = 0]; Value (Double) ... 
iseven  True if the number is even  Integer number (Int32) 
isnull  True if a given expression is null  [Value] 
isodd  True if the number is odd  Integer number (Int32) 
isregularps  Returns true if the Poincare section on the given energy is fully regular; otherwise returns false  Dynamical system (IDynamicalSystem); Energy of the system (Double); Number of points in the X direction (Int32); Number of points in the Y direction (Int32); [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = ""]; [Precision of the calculation (Double) = 0]; [True if the section at x == 0 should be computed (Boolean) = False] 
isregulartrajectory  Distinguishes using SALI whether the trajectory is regular (1) or chaotic (0)  Dynamical system (IDynamicalSystem); Initial condition of a trajectory or energy if the trajectory is randomly chosen (Vector  Double); [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = ""]; [Precision of the calculation (Double) = 0] 
jacobi  Eigensystem of a matrix calculated using Jacobi method; before calculation it makes symmetrization of a matrix  Symmetrix matrix (in other hand the matrix will be symmetrized) (Matrix) 
joinarray  Joins 1D Arrays into one array  Data to be joined (TArray) ... 
laguerre  Value of the Laguerre polynomial  Variable x (Double  PointD  Vector  PointVector  Matrix); Order of the polynomial (Int32); [Associated order of the polynomial (Double) = 0] 
lastevelements  Returns last elements of components of eigenvectors; all quantum numbers are taken into account  LHOQuantumGCM object (LHOQuantumGCM); Index of an eigenvalue (eigenvector) / quantum numbers (Int32); [Order of the elements from the back (Int32) = 0] 
lastevelementssumabs  Returns absolute value of the sum of last elements of components of eigenvectors  LHOQuantumGCM object = PavelStransky.Systems.LHOQuantumGCM 
legendre  Value of the Laguerre polynomial  Variable x (Double  PointD  Vector  PointVector  Matrix); Order of the polynomial (Int32) 
length  Returns length(s) or number of elements of a given object as an array  Object with several dimensions (Vector  TArray  Matrix  List  PointVector  String) 
leveltonumber  Transforms the string value of the level angular momentum 1/2 and parity into the numerical form 0.5 and vice versa  Level labeling (string format 1/2 or numerical format 0.5) (String) 
lhoqgcma5d  Creates an object that calculates eigenenergies of QuantumGCM in 5D basis preparing the Hamiltonian matrix by using algebraic relations  [A parameter of GCM (Double) = 1]; [B parameter of GCM (Double) = 1]; [C parameter of GCM (Double) = 1]; [K (mass) parameter of GCM (Double) = 1]; [Stiffness of the harmonic basis (Double) = 1]; [Planck constant (Double) = 0.01] 
lhoqgcmare  Creates an object that calculates eigenenergies of QuantumGCM in radial 2D basis even in angular coordinate preparing the Hamiltonian matrix by using algebraic relations  [A parameter of GCM (Double) = 1]; [B parameter of GCM (Double) = 1]; [C parameter of GCM (Double) = 1]; [K (mass) parameter of GCM (Double) = 1]; [Stiffness of the harmonic basis (Double) = 1]; [Planck constant (Double) = 0.01] 
lhoqgcmaro  Creates an object that calculates eigenenergies of QuantumGCM in radial 2D basis odd in angular coordinate preparing the Hamiltonian matrix by using algebraic relations  [A parameter of GCM (Double) = 1]; [B parameter of GCM (Double) = 1]; [C parameter of GCM (Double) = 1]; [K (mass) parameter of GCM (Double) = 1]; [Stiffness of the harmonic basis (Double) = 1]; [Planck constant (Double) = 0.01] 
lhoqgcmi5d  Creates an object that calculates eigenenergies of QuantumGCM in 5D basis preparing the Hamiltonian matrix by integrating the basis functions in xrepresentation  [A parameter of GCM (Double) = 1]; [B parameter of GCM (Double) = 1]; [C parameter of GCM (Double) = 1]; [K (mass) parameter of GCM (Double) = 1]; [Stiffness of the harmonic basis (Double) = 1]; [Planck constant (Double) = 0.01] 
lhoqgcmic  Creates an object that calculates eigenenergies of QuantumGCM in 2D cartesian basis (direct product of two 1D harmonic oscillators) preparing the Hamiltonian matrix by integrating the basis functions in xrepresentation; states with all possible (also nonfysical) angular momentum are included  [A parameter of GCM (Double) = 1]; [B parameter of GCM (Double) = 1]; [C parameter of GCM (Double) = 1]; [K (mass) parameter of GCM (Double) = 1]; [Stiffness of the harmonic basis (Double) = 1]; [Planck constant (Double) = 0.01] 
lhoqgcmir  Creates an object that calculates eigenenergies of QuantumGCM in radial 2D basis in angular coordinate preparing the Hamiltonian matrix byintegrating the basis functions in xrepresentation; both odd and even states are included  [A parameter of GCM (Double) = 1]; [B parameter of GCM (Double) = 1]; [C parameter of GCM (Double) = 1]; [K (mass) parameter of GCM (Double) = 1]; [Stiffness of the harmonic basis (Double) = 1]; [Planck constant (Double) = 0.01] 
lhoqgcmirf  Creates an object that calculates eigenenergies of QuantumGCM in 2D radial basis preparing the Hamiltonian matrix by integrating the basis functions in xrepresentation; states with all possible (also nonfysical) angular momentum are included  [A parameter of GCM (Double) = 1]; [B parameter of GCM (Double) = 1]; [C parameter of GCM (Double) = 1]; [K (mass) parameter of GCM (Double) = 1]; [Stiffness of the harmonic basis (Double) = 1]; [Planck constant (Double) = 0.01] 
lhoqgcmiro  Creates an object that calculates eigenenergies of QuantumGCM in radial 2D basis odd in angular coordinate preparing the Hamiltonian matrix by integrating the basis functions in xrepresentation  [A parameter of GCM (Double) = 1]; [B parameter of GCM (Double) = 1]; [C parameter of GCM (Double) = 1]; [K (mass) parameter of GCM (Double) = 1]; [Stiffness of the harmonic basis (Double) = 1]; [Planck constant (Double) = 0.01] 
linearregression  Polynomial regression of data  Input data for the regression (PointVector  Vector) 
list  Creates a list of all parameters  [Item to be added to the end of the list] ... 
log  Logarithm of the value (with specified base)  Variable x (Double  PointD  Vector  PointVector  Matrix); [Base of the logarithm (Double)] 
loglog  From both x and y values of a pointvector calculates log_10  pointvector (PointVector); [Scale parameter (Double) = 1] 
long  Converts given value to a long integer number (with arbitrary precision)  Value (Int32  String) 
lyapunov  Calculates SALI dependence on time for given trajectory  Dynamical system (IDynamicalSystem); Initial condition of a trajectory or energy if the trajectory is randomly chosen (Vector  Double); Time of the evaluation (Double); [Time step for the result (Double) = 0]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = ""]; [Precision of the calculation (Double) = 0] 
matrixcolumn  Given vectors put onto columns of a matrix  Data for a column (TArray  Vector  List) ... 
matrixrow  Given vectors put onto rows of a matrix  Data for a row (TArray  Vector  List) ... 
matrixunit  Creates a unit matrix  Size of the matrix (Int32) 
matrixzatona  Transforms the matrix with indices (Z, A) to (Z, N)  Matrix (Matrix) 
max  Vrací prvek s nejvyšší číselnou hodnotou  Value (Vector  Matrix) 
maxabs  Vrací prvek s nejvyšší číselnou hodnotou v absolutní hodnotě  Value (Vector  Matrix) 
maxabsindex  Vrací index prvku s nejvyšší číselnou hodnotou v absolutní hodnotě  Value (Vector  Matrix) 
maxima  Returns maxima of a given function  Dynamical system (IMinMax); [Precision of the calculation (Double) = 0] 
maxindex  Vrací index prvku s nejvyšší číselnou hodnotou  Value (Vector  Matrix) 
mcd  Maximal common divisor of given numbers  Value (Int32  LongNumber); Value (Int32  LongNumber) ... 
mean  Calculates mean of a vector  Vector (Vector) 
merge  Merges lists into one list  [Lists to be merged (List)] ... 
min  Vrací prvek s nejnižší číselnou hodnotou  Value (Vector  Matrix) 
minabs  Vrací prvek s nejnižší číselnou hodnotou v absolutní hodnotě  Value (Vector  Matrix) 
minabsindex  Vrací index prvku s nejnižší číselnou hodnotou v absolutní hodnotě  Value (Vector  Matrix) 
minima  Returns minima of a given function  Dynamical system (IMinMax); [Precision of the calculation (Double) = 0] 
minindex  Vrací index prvku s nejnižší číselnou hodnotou  Value (Vector  Matrix) 
new  Creates new object of a given type  Type of a variable ... 
norm  Norm of the vector  Vector which norm is calculated (Vector); [Power of items (Double) = 2] 
normalizedensity  Normalizes the level density of a given vector into the form (0, ..., length  1)  Energy levels of a system (Vector) 
nudatreadknownisotopes  Reads all known isotopes from http://wwwnds.iaea.org  
nudatreadnucleus  Reads all accessible pieces of information about a nucleus from http://wwwnds.iaea.org  Labeling of a nucleus (String) 
numbervariance  Calculates the number variance  Vector (Vector); Interval in the format (min, max, num) (Vector) 
numerator  Denominator of a fraction  Fraction (LongFraction) 
occupationnumber  Returns the occupation numbers of the Strutinsky method for a given mass number  Strutinsky object (Strutinsky); Mass number (Int32) 
operatoraction  Action of an operator on a given ket  Double pendulum system (QuantumDP); Ket vector (PointVector  Vector); [Type of the operator (Int32) = 0] 
operatorexpectdiagonal  Expectation value of the diagonal elements 
Double pendulum system (QuantumDP); Index of an eigenvalue (eigenvector) / quantum numbers (Vector  Int32); [Type of the operator (Int32) = 0] 
orbit  Finds a periodic orbit using Poincare sections  Dynamical system (IDynamicalSystem); Initial conditions (Vector); [Number of points of the final section (Int32) = 0]; [Minimum points of the circle (Int32) = 0]; [Precision of the calculation (Double) = 0] 
parity  Vrátí paritu stavů  LHOQuantumGCMIR 
pax  Returns the probability amplitude of the wave function in the required point (only 1D systems)  Variable x (Double  PointD  Vector  PointVector  Matrix); Quantum system (IQuantumSystem); Index of an eigenvalue (eigenvector) / quantum numbers (Int32) 
pcn  Number of principal components of eigenvector  Vector = PavelStransky.Math.Vector 
peresinvariant  Returns the Peres invariant of a quantum system  Quantum system (IQuantumSystem); [Type of Peres operator (0...L2, 1...H', 2...Hosc) (Int32) = 0] 
peresinvariantg  Creates matrix with Poincaré section by the plane y = 0 for 2D system; contours are determined by time averaged Peres invariant  Dynamical system (IDynamicalSystem); Energy of the system (Double); Time of the evaluation (Double); Number of points in the X direction (Int32); Number of points in the Y direction (Int32); [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0] 
peresinvariantt  Calculates SALI dependence on time for given trajectory  Dynamical system (IDynamicalSystem); Initial condition of a trajectory or energy if the trajectory is randomly chosen (Vector  Double); Time of the evaluation (Double); [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0] 
phase  Phase between two numbers or vectors  Real part of a number (Double  Vector); Immaginary part of a number (Double  Vector) 
pi  Value of Pi number  
plateau  Returns the plateau condition of the Strutinsky method for a given mass number (must be zero)  Strutinsky object (Strutinsky); Mass number (Int32) 
play  Plays a given vector  Channels of the sound to play (Vector  TArray  PointVector); [Parameters of the sound (sampleRate = 44100; bitsPerSample = 16) (Vector) = ] 
poincare  Calculates a Poincaré section for given energy or trajectory given by its initial condition  Dynamical system (IDynamicalSystem); Initial condition of a trajectory or energy if the trajectory is randomly chosen (Vector  Double); Number of points of the final section (Int32); Plane of the section (Vector); First coordinate of the phase space which will be stored (Int32); Second coordinate of the phase space which will be stored (Int32); [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0]; [True if only one orientation of the crossing of the plane shall be considered (Boolean) = False] 
point  Creates a point from two given numbers  Variable x (Double); Variable y (Double) 
pointvector  Converts given data to a pointvector  Values of the pointvector (Vector  List  TArray  PointD); [Y values of the pointvector (Vector  PointD)]; [Other points (PointD)] ... 
poisson  Value of Poisson distribution  Variable x (Double  PointD  Vector  PointVector  Matrix) 
polynom  Data of input vector interprets as coeficients of polynom and return its value  Variable x (Double  PointD  Vector  PointVector  Matrix); Coeficients of polynom (Vector) 
polynomintegrate  Data of input vector interprets as coeficients of polynom and return its integral  Variable x (Double  PointD  Vector  PointVector  Matrix); Coeficients of polynom (Vector) 
potentialroots  For GCM system solves the equation Potential == Given energy  GCM class (GCM); Energy of the system (Double); [Gamma coordinate of the GCM (Double) = 0] 
primes  Returns given number of primes  Count (Int32) 
Writes a text (or variable) to the writer  [Expression (or variable) = ""]  
printclear  Vymaže všechny výstupy  
printline  Writes a text (or variable) to the writer and begins new line  [Expression (or variable) = ""] 
probabilityamplitude  Returns the probability amplitude of the wave function in the required point  Quantum system (IQuantumSystem); Index of an eigenvalue (eigenvector) / quantum numbers (Int32); Value (Double) ... 
pstimes  Calculates times of crossing of the plane of Poincaré section for given energy or trajectory given by its initial condition  Dynamical system (IDynamicalSystem); Initial condition of a trajectory or energy if the trajectory is randomly chosen (Vector  Double); Number of points of the final section (Int32); Plane of the section (Vector); First coordinate of the phase space which will be stored (Int32); Second coordinate of the phase space which will be stored (Int32); [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0]; [True if only one orientation of the crossing of the plane shall be considered (Boolean) = False] 
pt1  Creates a class PT1 for studying quantum phase transitions  Mixing parameter of the two minima (Double); [Angular frequency of the LHO basis (Double) = 1]; [Planck constant (Double) = 0.01] 
pt1potential  Value of the potential of the system PT1  Variable x (Double  PointD  Vector  PointVector  Matrix); Mixing parameter of the two minima (Double) 
pt2  Creates a class PT2 for studying quantum phase transitions  Mixing parameter of the two minima (Double); [Angular frequency of the LHO basis (Double) = 1]; [Planck constant (Double) = 0.01] 
pt2potential  Value of the potential of the system PT2  Variable x (Double  PointD  Vector  PointVector  Matrix); Mixing parameter of the two minima (Double) 
pt3  Creates a class PT3 for studying quantum phase transitions (CASP potential)  A parameter of GCM (Double); B parameter of GCM (Double); [Angular frequency of the LHO basis (Double) = 1]; [Planck constant (Double) = 0.01] 
pt3potential  Value of the potential of the system PT3  Variable x (Double  PointD  Vector  PointVector  Matrix); A parameter of GCM (Double); B parameter of GCM (Double) 
ptsumln  Returns sum of logarithms of differences between E_i and other energies  Phase transition object (PT1); [Index of an eigenvalue (eigenvector) / quantum numbers (Int32) = 0] 
pv2dtomatrix  Convert an array of pointvectors into a matrix  Array or list of pointvectors (List  TArray); Interval in the format (minx, maxx, numx) (Vector); Interval in the format (miny, maxy, numy) (Vector); Interval in the format (minz, maxz, numz) (Vector) 
qdp  The quantum double pendulum system  [mu (Double) = 1]; [lambda parameter (ratio of lengths) (Double) = 1]; [gamma parameter (gravity parameter) (Double) = 1]; [Parameter of the ambiguity of the L_2^2 term in the kinetic term (usually 0...1) (Double) = 0] 
qep  The quantum extensible pendulum system  [nu parameter (Double) = 0]; [Stiffness of the harmonic basis (Double) = 1]; [Planck constant (Double) = 0.01] 
qspheroid  Creates Quantum Spheroid class  Deformation (Double) = 0 
qsturmcoulomb  Creates a quantum SturmCoulomb class  Intensity of the magnetic field (Double) = 0 
quantumtemperature  Calculates a temperature using expression Tr(Ro H) = K  Quantum system (IQuantumSystem); Mean energy (Double) 
randombrody  Value with Brody distribution  Brody parameter (Double) 
randomg  Generates Gaussian distributed random numbers with given variance and mean  [Variance of the distribution (Double) = 1]; [Upper bound (Double) = 1] 
randomgoe  Value with Wigner GOE distribution  
randomgse  Value with Wigner GSE distribution  
randomgue  Value with Wigner GUE distribution  
randommatrixsg  Generates a symmetric matrix with Gaussian distributed components (according to PRL 65, 529 (1990))  Size of the matrix (Int32) 
randompoisson  Value with Poisson distribution  
randomu  Generates uniformly distributed random numbers between given limits  [Lower bound (Double) = 0]; [Upper bound (Double) = 1] 
randomvectorbrody  Generates a vector with Brody distributed components  Length of the vector (Int32); Brody parameter (Double) 
randomvectorg  Generates a vector with Gaussian distributed components  Length of the vector (Int32); [Variance of the distribution (Double) = 1]; [Upper bound (Double) = 0] 
randomvectorgoe  Generates a vector with Wigner GOE distributed components  Length of the vector (Int32) 
randomvectorgse  Generates a vector with Wigner GSE distributed components  Length of the vector (Int32) 
randomvectorgue  Generates a vector with Wigner GUE distributed components  Length of the vector (Int32) 
randomvectorpoisson  Generates a vector with Poisson distributed components  Length of the vector (Int32) 
randomvectoru  Generates a vector with uniformly distributed components  Length of the vector (Int32); [Lower bound (Double) = 0]; [Upper bound (Double) = 1] 
regression  Polynomial regression of data  Input data for the regression (PointVector); Order of the polynomial (Int32) 
regularitybreakcurvature  Returns the energy for which there should be, according to the geometrical theory of chaos, the transition between regular and chaotic behaviour  GCM class (ClassicalGCM); Minimum considered energy (energy for which the system is fully regular) (Double); Maximum considered energy (energy for which the system is chaotic) (Double); [Number of points dividing the 2pi interval (Int32) = 0]; [Precision of the determination of the energy (Double) = 0.001] 
regularitybreaksali  Returns the energy for which the regular behavior starts breaking into the chaotic  Dynamical system (IDynamicalSystem); Minimum considered energy (energy for which the system is fully regular) (Double); Maximum considered energy (energy for which the system is chaotic) (Double); Number of points in the X direction (Int32); Number of points in the Y direction (Int32); [Precision of the determination of the energy (Double) = 0.001]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = ""]; [Precision of the calculation (Double) = 0]; [True if the section at x == 0 should be computed (Boolean) = False] 
removebadpoints  Removes bad points (NaN, Infinity) from Vector or PointVector  Object that contains bad points (NaN, Infinity) (Vector  PointVector) 
replacebadpoints  Replaces bad points (NaN, Infinity) in Vector or PointVector by a given value  Object that contains bad points (NaN, Infinity) (Vector  PointVector  Matrix); [Value (Double) = 0] 
replaceinterval  Replaces values from specified interval with new value  Variable x (Double  PointD  Vector  PointVector  Matrix); Minimal value to be replaced (Double); Maximal value to be replaced (Double); New value (Double) 
replacevalue  Replaces a specified value with other one  Variable x (Double  PointD  Vector  PointVector  Matrix); Old value (Double); New value (Double) 
safevalue  Gets the value of the variable from the context; If there the variable does not exist, returns default value.  Variable; Default value of the variable 
sali  Calculates SALI dependence on time for given trajectory  Dynamical system (IDynamicalSystem); Initial condition of a trajectory or energy if the trajectory is randomly chosen (Vector  Double); Time of the evaluation (Double); [Time step for the result (Double) = 0]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = ""]; [Precision of the calculation (Double) = 0] 
salig  Creates matrix with Poincaré section by the plane y = 0 for 2D system; contours are determined by SALI  Dynamical system (IDynamicalSystem); Energy of the system (Double); Number of points in the X direction (Int32); Number of points in the Y direction (Int32); [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = ""]; [Precision of the calculation (Double) = 0]; [True if the section at x == 0 should be computed (Boolean) = False]; [True if only one orientation of the crossing of the plane shall be considered (Boolean) = False] 
sample  Samples the pointvector in the points of the given vector  pointvector (PointVector); Sapmpling points (Vector) 
save  Saves current document into a file  [Name of the file (String) = ""] 
savenow  Saves current document into a file (in current thread)  [Name of the file (String) = ""] 
setcontext  Sets a new context  Given context (Context) 
setdiagonal  Given value or Vector of values put onto diagonal of square matrix  Square matrix (Matrix); Value(s) to be put onto diagonal (Vector  Double) 
setglobalcontext  Sets a new global context  Given context (Context) 
setglobalvar  Sets a variable into the global context  Name of the variable; [Value] 
setgraphparams  Sets new parameters to a graph  Graph object (created usually by graph command) (Graph); [Parameters for the whole graph (String  Context)]; [Parameters for groups of data (TArray  String  Context)]; [Parameters for curves (TArray  String  Context)] 
setnondiagonal  Given value put onto nondiagonal elements of square matrix  Square matrix (Matrix); Value to be put instead of all nondiagonal elements (Double) 
shellcorrection  Returns the shell corrections of the Strutinsky method for a given mass number  Strutinsky object (Strutinsky); Mass number (Int32) 
shotnoise  Generates a vector with shot noise values  Length of the vector (Int32); a (Vector); [Upper bound (Double) = 1]; [Poissonian intensity (Double) = 1] 
show  Shows a graph  Graph object (created usually by graph command) (Graph  TArray); [Name of the graph (will be shown in the graph caption) (String) = "Graph"]; [Number of columns in an array of graphs (Int32) = 1]; [Position of the window (PointD) = X = 1, Y = 1]; [Size of the window (PointD) = X = 1, Y = 1] 
simplexvolume  Calculates the volume of a simplex given by the vectors of the matrix  Matrix (Matrix) 
sin  Sine of the value  Variable x (Double  PointD  Vector  PointVector  Matrix) 
sinh  Hyperbolic sine of the value  Variable x (Double  PointD  Vector  PointVector  Matrix) 
smooth  Smooths a vector  Vector (Vector  PointVector) 
smoothleveldensity  Returns the smooth level density by the Strutinsky method  Variable x (Double  PointD  Vector  PointVector  Matrix); Strutinsky object (Strutinsky) 
solve  Solves an equation "the user function == zero"  User function (UserFunction); Minimum x value (Double); Maximum x value (Double); [Precision of the calculation (Double) = 0]; [Parameter of the function] ... 
sort  Ascending sort of the object (with keys according to the sorting will be done)  Object to be sorted (ISortable); [Keys for sorting (ISortable)] 
sortdesc  Descending sort of the object (with keys according to the sorting will be done)  Object to be sorted (ISortable); [Keys for sorting (ISortable)] 
spacing  Calculates neighbour spacing of vector components v_{i+j}  v_{i}  Vector (Vector); [Distance of the neigbour components (Int32) = 1] 
sphericalbesselj  Returns the value of the Spherical Bessel function j  Variable x (Double  PointD  Vector  PointVector  Matrix); Order of the polynomial (Double) 
sphericalbesseljd  Returns the value of the derivative of the Spherical Bessel function j  Variable x (Double  PointD  Vector  PointVector  Matrix); Order of the polynomial (Double) 
sphericalbesseljzero  Returns a given number of zeros of the spherical Bessel function j  Order of the polynomial (Double); Number of zeros (Int32); [Precision of the calculation (Int32) = 1E06] 
sphericalbessely  Returns the value of the Spherical Bessel function y (Spherical Neumann function)  Variable x (Double  PointD  Vector  PointVector  Matrix); Order of the polynomial (Double) 
sphericalbesselyd  Returns the value of the Spherical Bessel function y (Spherical Neumann function)  Variable x (Double  PointD  Vector  PointVector  Matrix); Order of the polynomial (Double) 
spline  Creates a spline object  pointvector (PointVector) 
splinevalue  Value of the Spline interpolation  Variable x (Double  PointD  Vector  PointVector  Matrix); Spline object (Spline) 
sqrt  Square root of the value  Variable x (Double  PointD  Vector  PointVector  Matrix); [Order of square root (Double  Int32) = 1] 
stairsx  Creates stairs from a pointvector  pointvector (PointVector) 
standardmapping  Creates a time series of the standard mapping with given initial conditions  Stochasticity parameter (Double); Time of the evaluation (Int32); Initial value of the variable r (Double); Initial value of the variable theta (Double) 
string  Vrátí hodnoty jako řetězec  int  double  Point  Vector  PointVector  Matrix  DateTime  string [; formát (string)] 
strutinsky  Returns an object dealing with Strutinsky corrections  Energy of the system (Vector); Order of the polynomial (Int32); Range of the interaction (Double  Vector) 
sum  Sum of all elements in the object  Object with several dimensions (Vector  Double  Int32  Matrix) 
sumabs  Sum of absolute values of all elements in the object  Object with several dimensions (Vector  Double  Int32  Matrix) 
sumsquare  Sum of squares of values of all elements in the object  Object with several dimensions (Vector  Double  Int32  Matrix) 
swapxy  Swaps X and Y coordinates  Object with x and y coordinates (PointD  PointVector) 
symmetryparameter  Symmetry parameter of eigenvector  Vector = PavelStransky.Math.Vector 
tan  Tangent of the value  Variable x (Double  PointD  Vector  PointVector  Matrix) 
tanh  Hyperbolic tangent of the value  Variable x (Double  PointD  Vector  PointVector  Matrix) 
tdmeanoperator  Thermodynamical mean value of a Peres operator  Quantum system (IQuantumSystem); Temperature (Double); [Type of Peres operator (0...L2, 1...H', 2...Hosc) (Int32) = 0] 
testarpack  Generates randomly a symmetric sparse matrix and diagonalizes it  Length of the vector (Int32); Number of nonzero elements (Int32); Number of computed eigenvalues (and eigenvectors) (Int32) 
testarray  Vytvoří testovací řadu ve formátu (000, 001, ...)  dimenze1 (int)[; dimenze2 (int) ...] 
testwww  Tries to read text from specified URI  [URI (link) (String) = "www.seznam.cz"] 
threebody  Creates ThreeBody class  [Masses of the bodies (Vector) = ] 
time  Returns the duration of the calculation  Commands to be calculated 
timeevolution  Time evolution of a given ket  Quantum system (IQuantumSystem); Ket vector (PointVector  Vector); Time of the evaluation (Double) = False 
timenow  Returns the current time  
toarray  Given nonarray object change to an array.  Object to be converted to array (FileData  List  Vector) 
trace  Trace of a given matrix  Matrix (Matrix) 
traffic  Creates a Traffic class  [Number of points in the X direction (Int32) = 10]; [Number of points in the Y direction (Int32) = 10]; [Length of the street in the X direction (Int32  Vector) = 15]; [Length of the street in the Y direction (Int32  Vector) = 15]; [Topology of the traffic system (boundary conditions) ("cyclic"  "SingleMoebius"  "SimpleMoebius") (String) = "cyclic"] 
trafficic  Generates initial conditions for the traffic system  Traffic class (Traffic); Value for initial condition (Double  Vector); [Type of the initial condition ("probability"  "total"  "street") (String) = "probability"] 
trafficmatrix  Returns a matrix showing the state of the traffic system  Traffic class (Traffic) 
trafficparams  Sets the parameters of the traffic system  Traffic class (Traffic); [The distance of the sensor from the crossing (Int32) = 1]; [The short distance for the incomming cars (Int32) = 1]; [The short distance for the outgoing cars (outgoing street stopped) (Int32) = 1]; [Minimum green time of the traffic lights (Int32) = 1]; [Maximum tolerance for the incomming cars (Int32) = 1]; [Maximum number of cars in the short distance that will pass the lights (Int32) = 1] 
trafficrun  Runs the traffic system for several time steps  Traffic class (Traffic); [Time of the evaluation (Int32) = 1]; [Number of points from each side to cut the boundary (Int32) = 0] 
trafficstep  Makes a step of the traffic system  Traffic class (Traffic); [Time of the evaluation (Int32) = 1] 
trajectorylength  For given energy or a trajectory given by its initial condition calculates the length of the trajectory  Dynamical system (IDynamicalSystem); Initial condition of a trajectory or energy if the trajectory is randomly chosen (Vector  Double); Time of the evaluation (Double); [Time step for the result (Double) = 0]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0] 
trajectorym  For given energy or a trajectory given by its initial condition calculates the trajectory; the result is returned by a matrix in the form (time, x, y, ..., px, py, ...)  Dynamical system (IDynamicalSystem); Initial condition of a trajectory or energy if the trajectory is randomly chosen (Vector  Double); Time of the evaluation (Double); [Time step for the result (Double) = 0]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0] 
trajectoryp  For given energy or a trajectory given by its initial condition calculates the trajectory; the x, y coordinates of the result is returned by a PointVector  Dynamical system (IDynamicalSystem); Initial condition of a trajectory or energy if the trajectory is randomly chosen (Vector  Double); Time of the evaluation (Double); [Time step for the result (Double) = 0]; [Method of RungeKutta calculation (Normal  Adapted  Energy) (String) = "normal"]; [Precision of the calculation (Double) = 0] 
transpose  Transposition of a matrix  Matrix (Matrix) 
tsintegrate  Integrates a time series S_{i}=sum_{j=1}^{i}(s_{j} 
Vector (Vector) 
twobody  Creates a ClassicalGCM class (nonrotating case with simple kinetic term)  [Masses of the bodies (Vector) = ] 
type  Type of the value  Value 
unfolding  Unfolds given data  Energy levels of a system (Vector); Parameter of the function (Int32); [Type of the unfolding procedure ("cpolynom") (String) = "cpolynom"] 
use  Pokud je zadán název funkce, vrátí její použití, jinak vytvoří řadu (Array) s použitím všech zaregistrovaných funkcí  [název funkce] 
usecontext  Uses the given context for specified calculations  Given context (Context); [Commands to be calculated]; [Variable] ... 
variance  Calculates variance of a vector  Vector (Vector) 
vector  Convert given data to a vector  [Items of vector (TArray  Double  Int32  Matrix  List  Vector)] ... 
vmatrix  cal_{V} matrix (PRL 98, 234301 (2007), expression (27))  GCM class (IGeometricalMethod); Energy of the system (Double); Variable x (Double); Variable y (Double) 
vmatrixg  Creates matrix with Poincaré section by the plane y = 0 for 2D system; contours are determined by SALI  GCM class (IGeometricalMethod); Energy of the system (Double); Interval in the format (minx, maxx, numx) (Vector); Interval in the format (miny, maxy, numy) (Vector); [Index of the eigenvalue (0 is the highest one) (Int32) = 0] 
vmatrixzero  For GCM system and given energy calculates the line where the given eigenvalue of V matrix is zero  GCM class (IGeometricalMethod); Energy of the system (Double); [Number of points of the equipotential contour (Int32) = 0]; [Number of points dividing the 2pi interval (Int32) = 0]; [Index of the eigenvalue (0 is the highest one) (Int32) = 0] 
vrenorm 